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Abstract
We review Fermi surfaces and band dispersion of metallic monatomic layers
(surface superstructures) on semiconductor substrates studied by photoemission
spectroscopy, in connection with the surface electronic transport properties. By
using various surface superstructures such as two- and quasi-one-dimensional
metallic ones, the conductivity, its anisotropy, and the Hall effect in the
surface states are understood quantitatively by the Fermi surfaces and band
dispersion using the Boltzmann picture. The experimental techniques and
analysis procedures are described, which are applicable to various surface
systems. This demonstrates that surface atomic layers provide an intriguing
platform for the study of atomic-scale low dimensional electron dynamics.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The shape and size of the Fermi surface of a metal govern various physical properties such
as electronic transport, magnetic/optical properties, and phase transitions such as the Peierls
transition [1–8]. Studies on Fermi surfaces, so-called Fermiology, have started since the middle
of the 20th century through research on oscillatory galvanomagnetic effects: the de Haas–
van Alphen and the Shubnikov–de Haas effects have become powerful tools to determine the
shape of Fermi surfaces [7–9]. However, the measurements require quite extreme experimental
conditions, such as high magnetic fields (�1 T) and low temperatures (�10 K). Other
probes for Fermi surfaces are also developed, utilizing, e.g., Compton scattering and positron
annihilation [10]. These techniques do not require extreme experimental conditions, but their
resolutions in k-space are quite limited.

Angle-resolved photoemission spectroscopy (ARPES) has become one of the most
powerful probes for Fermi surface mapping [4, 5]. It enables one to determine the valence
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Figure 1. An experimental set-up for the photoemission Fermi surface and band dispersion
mapping. With a fixed arrangement of photon source (He lamp or synchrotron radiation) and an
electron spectrometer, photoelectrons from a sample are detected at various polar (ϑ) and azimuth
angles (φ) by rotating and tilting the sample.

band dispersion through acquiring energy spectra at various polar and azimuth angles with a
small acceptance-angle detector. The experimental set-up is schematically drawn in figure 1.
The sensitivity from surface to volume is tuned by choosing appropriate photon energy [5, 11].
If the ARPES scan is performed by setting the detection energy window at a small interval
around the Fermi level (EF), the Fermi surface is mapped out by accumulating the data over
a wide range of emission angles (wavevector, k space). In this way, the Fermi surface of a
one-dimensional (1D) or two-dimensional (2D) metal can be determined directly and, for a
three-dimensional (3D) metal, sections through the Fermi surface can be obtained.

Research on atomic layers or surface superstructures on crystal surfaces have been
triggered by interest in studying their physical properties, that are quite different from
well known 3D bulk crystals [12]. Nowadays, surface systems have become an important
playground for low dimensional physics [13, 16, 17, 19]. This is because the atomic
structures of surfaces can be directly observed by various surface science techniques such as
scanning probe microscopes and electron (positron) diffractions [12, 20, 21]. Furthermore,
since photoelectrons excited by vacuum ultraviolet (VUV) light, conventional photons for
photoemission spectroscopy, originate mostly from surface layers due to very short electron
escape depth, we can routinely probe the surface electronic states [5]. On clean or metal-
covered surfaces, various 1D or 2D metal structures are formed. While an isotropic free-
electron system in 3D possesses a Fermi sphere (figure 2(a)), that in 2D has a Fermi cylinder
(figures 2(b) for isotropic and (c) for anisotropic cases), and that in (quasi-)1D is Fermi sheets
(figures 2(d) and (e)). The Fermi contours in various dimensions are schematically depicted
in figure 2. In 2D (on a kx –ky plane), figures 2(b) and (c) correspond to Fermi circles and
hexagons, respectively, while figures 2(d) and (e) are Fermi lines.

Such Fermi surfaces of various metallic surface superstructures have been recognized
directly by ARPES measurements as shown in figure 3. Figure 3(a) is a quasi-1D Fermi
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Figure 2. Fermi surfaces in various dimensions. (a) Isotropic three-dimensional (3D) sphere,
(b) isotropic two-dimensional (2D) cylinder, (c) anisotropic (hexagonal) 2D cylinder, (d) one-
dimensional (1D) sheet, and (e) quasi-1D sheet.

surface of the Si(111)4 × 1-In surface [22]. The Fermi surface is actually wavy sheets as
shown in figure 2(e), and satisfies the nesting condition, leading to a Peierls phase transition.
Figure 3(b) is circular Fermi surfaces of sub-bands of isotropic 2D quantum-well states formed
in a ultrathin Ag film prepared on Si(111)7 × 7 [23, 24]. Figures 3(c) and (d) are hexagonal
Fermi surfaces for Ge(111)

√
3 × √

3-Sn [25] and ‘discommensurate’ Si(111)′′5.55 × 5.55′′-
Cu [26], respectively. Figure 3(e) is Fermi surfaces of an ultrathin Bi film on Si(111)7 × 7,
showing a hexagonal hole pocket around the � point (kx = ky = 0) and surrounding six oval
electron pockets [27]. Relations between such hexagonal Fermi surfaces and charge-density-
wave transitions have been one of the central issues in surface science.

Electrons at EF (on the Fermi surface) are in general responsible for transport phenomena.
Transport through surface states is also the case, which has now been an important issue
for studying atomic-scale low dimensional electron dynamics. A relation between the
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Figure 3. Photoemission Fermi surfaces of various surface superstructures and quantum films
on semiconductor substrates. (a) Si(111)4 × 1-In taken with a 137 mm Perkin–Elmer Omni
IV spectrometer [22]. (b) Quantum Ag(111) film with a Gammadata-Scienta SES-100 [23].
(c) Ge(111)

√
3 × √

3-Sn with VG ADES-400 [25]. (d) Discommensurate Si(111)‘5.55 × 5.55’-Cu
with VG ESCALAB 220 [26]. (e) Quantum Bi(111) film with a Gammadata-Scienta SES-100 [27].

conductivity and the Fermi surface is derived from the Boltzmann equation as follows, with an
approximation that the carrier relaxation time τ is independent of the electron wavevector [28].
The conductivity tensor is given by

σi j = e2τ

2π2h̄

∫
vki vk j dkF

|vk | , (1)
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where kF and vki are the Fermi wavevector and Fermi velocity vector along the i direction, the
latter being obtained from the band dispersion at EF, vk = ∇k Ek/h̄. The integral is done on
the Fermi surface. For the isotropic 2D electronic systems, the formula is reduced to a simple
one as [29]

σ = e2

2
· (τ · vF) · vF · D2D, (2)

where vF is the Fermi velocity, and D2D the 2D density of states at EF. The product (τ · vF)

is the mean free path � of Fermi electrons. The conductivity is thus reasonably expressed
by a product of the mean free path, velocity and concentration of Fermi electrons. These
quantities are basically derived by the electronic states only at EF, which is directly given by
photoemission measurements.

Monatomic layers on crystal surfaces are not only interesting for condensed matter physics,
but also have important possibilities for applications to solid devices. Rapid progress in the
miniaturization of microelectronic devices now forces the signal currents to flow near the
surface/interface region in semiconductor crystals and ultimately through only one atomic layer.
Despite such scientific and technological interests, the conductivity measurement of surface
atomic layers has been a challenging experiment since the surface inevitably has an electrical
contact with the substrate that hampers detection of the intrinsic surface conductivity. Much
research has attempted to perform surface-sensitive conductivity measurements with various
methods such as using semiconductor-on-insulator wafers or patterned surfaces [30–33]. We
have developed four-point probe (FPP) measurement methods done in situ in ultrahigh vacuum
on various surface superstructures [34, 35, 37–40]. We found through the FPP measurements
that simple attachment of electrode probes on a sample surface with probe spacing of cm–
mm is enough to extract electrical and Hall conductances of surface states quantitatively if
one chooses appropriate surface phases and proper data analyses [14–16, 29, 41]. The FPP
method with probe spacing on the micrometre scale turns out to be much more sensitive to the
surface [35, 36].

In the present paper, we summarize some of our recent studies on Fermi surfaces of
metallic atomic layers on semiconductor surfaces studied by photoemission spectroscopy, in
connection with surface transport measurements [29, 40, 41]. We have mapped out Fermi
surfaces of 2D and 1D surface superstructures through detailed ARPES measurements. We
have, on one hand, performed surface transport measurements with our own experimental
techniques and succeeded in obtaining the electrical conductivity, its anisotropy, and the Hall
coefficient of the metallic surface superstructures. The transport phenomena are quantitatively
described by the 2D Fermi surfaces in the Boltzmann picture. The agreement between the
photoemission and conductivity results justifies our experimental techniques and analysis
procedures for surface-state transport. The combination with Fermi-surface and band-
dispersion mapping by ARPES and conductivity measurements by in situ FPP methods provide
fruitful results in surface physics.

In the following, we introduce, first, an example of an isotropic 2D metallic monolayer
on a semiconductor surface, the Si(111)

√
3 × √

3-Ag surface. Through monovalent atom
adsorptions on this surface, electrons are doped to the metallic surface-state band, leading to a
transition to a new-ordered structure, the

√
21 × √

21 phase. This structural transition induces
a characteristic evolution of Fermi surface topology [29], and also results in drastic changes in
electrical conduction and Hall effect [41]. The changes in transport properties are explained in
terms of the Fermi surface evolution by using equations (1) and (2). At the end of the review,
we briefly introduce a case of a quasi-1D metallic surface, Si(111)4 × 1-In. The anisotropic
surface conductivity is explained by the quasi-1D Fermi surface [40].
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Figure 4. (a) Cross-sectional and (b) plan views of the inequivalent triangle (IET) structural model
of Si(111)

√
3 × √

3-Ag. The largest (red) circles represent Ag atoms. Other circles are Si atoms.
(c) Schematic drawing of the band bending of bulk bands in an n-type substrate below the

√
3×√

3-
Ag surface. Vertical and horizontal axes correspond to electron energy and depth from the surface,
respectively.

2. Isotropic two-dimensional metal

2.1. Evolution of Fermi surface topology

The Si(111)
√

3×√
3-Ag surface (

√
3×√

3-Ag for short hereafter), induced by one monolayer
(ML) Ag adsorption on a Si(111) substrate, has been historically one of the most important
prototypes for the metal/semiconductor interface [16, 18, 42–44]. Almost all kinds of surface-
science technique have been applied to this surface. Now its atomic and electronic structures
are well understood. Figures 4(a) and (b) show cross-sectional and top-view images of the
atomic structure model, respectively. This is a so-called ‘inequivalent triangle (IET)’ model,
containing three Ag atoms in the

√
3×√

3 surface unit cell (figure 4(b)) [43, 44]. The Ag atoms
form two inequivalent, large and small, triangles in the unit cell. As shown in figure 4(a), only
the surface top layer is composed of Ag and Si. The diamond crystal structure of bulk Si is
formed below the third layer. However, in the sub-surface region (10 nm–10 μm deep from
the surface depending on the doping level in the crystal), the energy position of the valence
band maximum (EVBM), referred to EF, continuously changes from that in the bulk, i.e. band
bending, as shown in figure 4(c). This region is a so-called surface space-charge layer. It has
been known that EVBM at the

√
3 ×√

3-Ag surface locates about 0.1 eV below EF, irrespective
of the doping type in the Si substrate [29, 45]. Depending on the doping type in the substrate,
therefore, the space-charge layer is classified into an inversion layer (on a n-type substrate) or
a hole-accumulation layer (on a p-type substrate) [46]. This is because the sub-surface region
below the

√
3 × √

3-Ag always accumulates excess holes to compensate the negative charge
trapped in the surface states. Another important point from this analysis is that there exists
a pn junction between the space-charge layer and the underlying substrate for n-type wafers,
resulting in the electrical isolation between the surface region and substrate bulk, while no
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barrier is formed on p-type wafers. This is important in the surface conductivity measurements
because the measuring current injected from electrodes on the surface does not penetrate into
the bulk region due to the pn junction on n-type substrates, while it penetrates deep into the bulk
for p-type substrates, making the measurements surface sensitive only for n-type substrates.

Figure 5(a) shows the band dispersion diagram of the
√

3 × √
3-Ag surface measured by

ARPES. The ARPES results shown in the rest of the paper were acquired with unpolarized He
Iα radiation (hυ = 21.2 eV), with a commercial Scienta SES-100 angle-resolved photoelectron
spectrometer. The Fermi energy was determined by fitting the Fermi edge measured on a Ta
holder attached to the sample. In the diagram in figure 5, the intensities of the spectral features,
tracing band dispersion curves, are represented by the brightness in grey-scale [24]. The black
region near EF indicates the band gap, semiconducting nature of the bulk Si. Within the bulk
band gap, a metallic band crossing EF locates at kx ∼ 1.1 Å

−1
, which is a surface-state band

of
√

3 × √
3-Ag. As shown in a magnified image in figure 5(b), the surface-state band has

parabolic dispersion around �√
3 with an effective mass, m∗, of about 0.13 m0, where m0 is the

free-electron mass [47]. The Fermi surface made by this band is a complete circle around the
�√

3 point as shown in figure 5(d) [48, 49].

When a small amount (<0.1 ML) of noble-metal atoms is deposited on this
√

3 × √
3-

Ag surface, one can find adatoms and nanoclusters, composed of three adatoms, sparsely and
randomly adsorbed on the surface. Figure 6(a) is an STM image of Ag adatoms and Ag
nanoclusters on the

√
3 × √

3-Ag surface. A periodic protrusion is assigned to the smaller
Ag triangle in the IET structure model in figure 4(b) [44]. Similar nanoclusters are also found
for the Au deposition, and they distribute on the surface uniformly as shown in figure 6(b) [50].
These adatoms donate electrons to the

√
3 × √

3-Ag surface layer. However, the free-electron
surface-state band (figure 5(b)) shows non-rigid band behaviour through the electron doping.
Figures 6(c)–(e) are grey-scale band dispersion images with Au coverage ranging from 0.01 to
0.03 ML. The binding energy of the band bottom becomes larger with the Au coverage and,
at the same time, the surface-state bands show splitting [50]. The adatom-induced band is
probably a resonant band and localized states around the nanoclusters, which hybridize with
the delocalized

√
3 × √

3-Ag surface-state band. Similar changes in electronic band dispersion
are also found for alkali-metal deposition on the

√
3 × √

3-Ag surface [50].
When the coverage of monovalent atoms such as noble metal (Cu, Ag, Au) and

alkali metal (Na, K, Cs) on top of the
√

3 × √
3-Ag reaches 0.14 ML, the nanoclusters

are arranged periodically and the surface exhibits a phase transition to a
√

21 × √
21

phase [16, 29, 42, 51–54]. Figure 7(a) shows STM images of the
√

3 × √
3 and

√
21 × √

21
phases prepared by additional Ag deposition. In contrast to the simple

√
3 × √

3 image, the√
21×√

21 phase has much more complicated STM features [53]. Concerning the
√

21×√
21

surface structure, various models of atomic arrangement have been proposed, but the structure
has still remained controversial. Therefore, there has been no theoretical STM simulation
reported for the

√
21 × √

21 surface to assign STM features in figure 7(a). Up to now, a
structure model with three adatoms per

√
21 × √

21 unit cell adsorbed on the
√

3 × √
3-Ag

substrate has been found to be the most plausible [21, 54].
Figure 7(b) exhibits evolution of Fermi surfaces through the

√
3 × √

3-to-
√

21 × √
21

transition by additional Ag adsorption. As shown in figure 5(c), the
√

3 × √
3-Ag surface has

an isotropic free-electron-like metallic band. Therefore, the Fermi surface is a complete circle,
figure 7(b), and the radius, the Fermi wavevector (kF), is ∼0.1 Å

−1
. By 0.07 ML-Ag deposition

on top of the
√

3 × √
3-Ag, kF of the Fermi surface (the Fermi circle) becomes larger. This

indicates electron doping from the Ag adatoms to the
√

3 × √
3 surface-state band. When the

adatom coverage reaches ∼0.14 ML, the
√

21 × √
21 phase is formed and much larger Fermi

circles are identified over the whole surface Brillouin zones. Despite the non-rigid band shift of
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Figure 5. ARPES data of Si(111)
√

3 × √
3-Ag surface superstructure. (a) A grey-scale band

dispersion image along the [1̄10] axis. (b) The magnified grey-scale band dispersion around the
centre of the second

√
3 × √

3 SBZ (�̄√
3). (c) Profile of (b) at EF, showing the finite width of

surface-state peaks, giving an uncertainty in Fermi wavenumber. (d) Fermi surface map [48]. At
the centre Brillouin zone (�0), the Fermi ring is missing while it is clearly observed in the second
SBZs. The dotted lines show the 1 × 1-SBZ and the solid lines are the

√
3 × √

3-SBZ. The inset
shows the

√
3 × √

3-SBZ. The shaded area is the measured region in (a) and figure 7.

the
√

3 × √
3-Ag surface-state band, as described above, the Fermi circle shows free-electron-

like behaviour since the hybridization mentioned in figures 6(c)–(e) occurs at energy regions
well below the Fermi level.
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Figure 6. (a) An STM image of a Ag adatom (upper left) and a Ag nanocluster (centre), composed
of three Ag adatoms, on the

√
3 × √

3-Ag surface taken at 65 K. (b) A wide-area STM image of
the

√
3 × √

3-Ag covered with Au nanoclusters of 0.02 ML coverage observed at 65 K. (c)–(e) A
series of grey-scale band dispersions near �̄√

3 of the
√

3 × √
3-Ag with Au deposition of (c) 0.01,

(d) 0.02, and (e) 0.03 ML, respectively [50]. The measurement was performed at 135 K.

To understand the nature of the photoemission Fermi surface map, we recall the STM
image of the

√
21 × √

21-Ag surface in figure 8(a). The surface consists of two domains due
to rotation of ±10.89◦ with each other. Figure 8(a) shows unit cells of the two domains and the
domain boundary across the figure [53]. The photoemission Fermi surface of the

√
21 × √

21
surface is then compared with the two

√
21×√

21 surface Brillouin zones (SBZs) as figure 8(b).
It is clear that the Fermi circles follow the

√
21 × √

21 periodicity in the k space. The same
results are also measured for the Si(111)

√
21×√

21-(Ag, Au) as shown in figures 8(c) and (d).
In figure 8(f), the Fermi circle of the

√
21 × √

21 surface is drawn in an extended SBZ. A
schematic drawing of the Fermi surface of the

√
3 × √

3-Ag surface is presented in figure 8(e)
for a comparison. An area ratio between the Fermi circle and the

√
21 × √

21 SBZ indicates
three electrons in the

√
21 × √

21 unit cell. Because of the 2D electronic system, the electron
density n2D can be related to kF by

kF = √
2πn2D. (3)

Then, n2D can be calculated from the kF values, 0.16, 0.64, and 1.1×1014 cm−2 for the pristine√
3 × √

3, the 0.07 ML-Ag added surface, and the
√

21 × √
21-Ag, respectively. One can

find that the increase in electron density is nearly proportional to the additional Ag coverage
because 1 ML = 7.8×1014 cm−2. Since the coverage of 0.14 ML corresponds to three adatoms
in the

√
21 × √

21 unit cell, the adatom is probably ionized as a cation (+1 charge).
Since the Fermi circle is larger than the first SBZ, the first SBZ is fully filled with two

electrons. The Fermi circle covers up to the third SBZ and the segments of the Fermi circle in

9
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Figure 7. (a) STM images of Si(111)
√

3 × √
3-Ag and Si(111)

√
21 × √

21-Ag. (b) Evolutions of
the Fermi rings by Ag deposition on the

√
3 × √

3-Ag at ∼120 K. The additional Ag coverage is
0 ML (the pristine

√
3 × √

3-Ag), 0.07 ML, and 0.15 ML (the
√

21 × √
21-Ag), respectively. The

SBZs of 1 × 1 and
√

3 × √
3 are drawn as grey and white lines, respectively.

the second and third SBZs are depicted in figures 8(g) and (h), respectively. The Fermi ring of
the second SBZ consists of a hole pocket centred at the �̄√

21 point, while that of the third SBZ
is composed of small electron pockets at the K̄√

21 points.
To study dispersions of the surface-state bands responsible for the Fermi circles, ARPES

measurements were performed near EF. Figure 9 shows experimental energy-versus-
wavevector diagrams along a line α–β in figure 8(b). Between EF and the binding energy
EB = 0.8 eV, sharply dispersing parabolic bands are identified. A curve fit to the experimental
dispersion indicates that m∗ is about 0.29 m0. The value is almost the same as reported
previously for noble-metal-induced

√
21 × √

21 phases [42, 53, 55]. In the figure, one can
also find that the bands show an energy gap at zone boundaries (ZBs) of the

√
21 × √

21
SBZ. For example, along the α–β line (see figure 8(b)), at the ZB of ‘relative wavevector’
0.087 Å

−1
, one can obviously find that the free-electron band energetically splits into two

bands, higher (Shigh) and lower (Slow) bands with energy separation (�E) of 0.1–0.2 eV at
EB = 0.3 eV. This energy splitting at the zone boundary is consistent with a picture of

10



J. Phys.: Condens. Matter 19 (2007) 355007 I Matsuda and S Hasegawa

Figure 8. (a) A STM image of two orientational domains of Si(111)
√

21 × √
21-Ag separated by

a linear boundary. (b) SBZs of the two orientational domains of
√

21 × √
21 overlapped on the

experimental result of figure 7(b). SBZs of 1 × 1 and
√

3 ×√
3 are also shown. The α–β line in (b)

is a scanning axis of ARPES measurement shown in figure 9. (c) Photoemission Fermi surfaces of
Si(111)

√
21×√

21-(Ag, Au), Crain et al [42] (with permission from F J Himpsel). (d) Our result of
Fermi surface mapping, overlapped with

√
21×√

21R+10.98◦ (red, thin),
√

21×√
21R−10.98◦

(green, thin),
√

3 × √
3 (white, thick), and 1 × 1 (grey, thick) SBZs. (e) Schematic drawing of a

Fermi surface of Si(111)
√

3 × √
3-Ag in the

√
3 × √

3 SBZ. A
√

21 × √
21 SBZ is depicted in (e)

with dotted lines for a comparison. (f) Superposition of a free-electron Fermi ring for valence 3 on
an extended Brillouin zone of

√
21 × √

21. (g) The Fermi rings in the reduced second
√

21 × √
21

SBZ. (h) The Fermi rings in the reduced third
√

21 × √
21 SBZ. The shaded areas correspond to

electron-filled regions. Arrows on the peripheries of Fermi surfaces in (e)–(h) show motion of the
Fermi electrons under a magnetic field (B) out of the paper [41].

the band folding and the multiple circles with the
√

21 × √
21 periodicity in figures 7(b)

and 8(c) [42, 55].
To visualize change of the electronic structure through the

√
3 × √

3-to-
√

21 × √
21

transition, we have performed band calculation based on the nearly-free-electron (NFE)
model [2] with the band parameters, m∗, kF, and �E , derived from the present ARPES
results. Figure 10 shows an illustration of calculated dispersion curves for Si(111)

√
3 × √

3-
Ag and Si(111)

√
21 × √

21-Ag. In the calculation, seven free-electron bands of one first
SBZ and six second SBZs are adopted. Within wavevector regions of kx = 0–0.25 Å

−1
and

11
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Figure 9. A photoemission band dispersion for the Si(111)
√

21 × √
21-Ag surface. The data

sets have been compiled from photoemission spectra by mapping angle scans along the α–β line
indicated in figure 8(b). The zone boundaries (ZBs) of the

√
21 × √

21 SBZ are indicated.

ky = 0–0.25 Å
−1

, a metallic band of the
√

3 × √
3-Ag is free-electron-like. On the other

hand, in this k-region, Si(111)
√

21 × √
21-Ag has symmetry points, K̄√

21 and M̄√
21, and a

ZB. Through the band-folding effect, there exist three bands below EF and the energy gap at√
21 × √

21 ZBs. The values of the energy gaps at
√

21 × √
21 ZBs are reproduced by setting

the Fourier coefficient of potential energy, U , to −75 meV. The overall band structure based
on the NFE model agrees well with the photoemission results described above. It is noted
that bands in the second and third SBZs are degenerate at the K̄√

21 point. In contrast, NFE
calculation with positive U value results in degeneracy of bands in the first and second SBZs,
which is different from the experimental results. Since the positive and negative values of U
imply repulsive and attractive potentials, respectively, surface state electrons of the

√
21 × √

21
phase feel the attractive potential of the

√
21 × √

21 period. This seems consistent with a
picture that the adatoms are ionized as cations on the surface, as mentioned above.

2.2. Electrical conduction through surface atomic layers

Among many surface superstructures on Si(111), the
√

21 × √
21 phase has attracted

considerable interest in surface transport phenomena [16]. Deposition of any noble-metal atoms
of less than a monolayer on the

√
3 × √

3-Ag surface increases the conductivity significantly.
The maximum conductivity is obtained at the

√
21 × √

21 formation with around 0.14 ML
coverage of noble metals, indicating a close relation between the high electrical conductivity
and the superstructure formation [52]. The transport experiments have been performed with the
FPP method with macroscopic probe spacing [16].

In general, the conductivity is originated from three electrical channels, surface-state bands
of the topmost atomic layers, bulk-state bands in the surface space-charge layer beneath the
surface, and bulk-state bands in the inner crystal [16]. Since the measurements have been
performed in situ in UHV using the same Si wafer with different surface superstructures, the
transport change is only described with the first two channels. As described below, there exist
excess holes in the surface space-charge layer beneath the

√
3 × √

3-Ag phase, which are
depleted when the surface transforms to the

√
21×√

21 phase [45]. Therefore, the conductivity
in the surface space-charge layer should decrease through the

√
3 × √

3-to-
√

21 × √
21

transition, which is opposite to the experimental fact. Therefore, the surface-state channel
is responsible for the increase of electrical conductivity. The research has demonstrated, for the
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Figure 10. Empirical band calculation of Si(111)
√

3 × √
3-Ag (upper) and Si(111)

√
21 × √

21-
Ag (lower). The calculation is based on the nearly-free-electron (NFE) model with band parameters
determined by photoemission spectroscopy. The position of the Fermi level is depicted as a black
sheet. Intersections of the sheet and the bands trace the shape of the Fermi surface.

first time, measurement of electronic transport through a surface atomic layer, not through the
bulk states [16].

Recently, we have developed a new experimental set-up to measure both longitudinal
resistance and transverse resistance (Hall resistance) of a surface simultaneously with magnetic
field applied perpendicular to the surface [41], as schematically drawn in figure 11. The
four tungsten (W) wires (0.3 mm in diameter) for voltage probes were pressed on the sample
surface before installation into the UHV chamber. The current flows between the two tantalum
(Ta) clamps at the sample ends. The longitudinal voltage (Vxx ) and Hall voltage (VH) are
measured simultaneously as functions of the current and magnetic field. The previous surface
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Figure 11. A schematic drawing of the experimental set-up for the galvanomagnetic transport
measurement with a silicon wafer. Magnetic field (B) is applied normal to the surface. A pair of
tantalum (Ta) clamps is for the current source and two pairs of tungsten (W) wire-contact electrodes
are for voltage probes. The probe spacings were 9.6 and 3 mm for the longitudinal (Vxx ) and
Hall (VH) voltage measurements, respectively. The electron beam is irradiated on a sample surface
to observe reflection high energy electron diffraction patterns. Deposition is possible during the
conductivity measurement.

conductivity experiments [52] correspond to measurements of Vxx only, without magnetic field.
The macroscopic probe spacing in the millimetre range enables conductivity measurement
during metal deposition and reflection high energy electron diffraction observation to confirm
the surface superstructure, while the sensitivity to the surface is low. The magnetic field of
±6 T is applied with a superconducting coil.

We now describe how to obtain the surface-state electrical conductivity of the surface
superstructures from the present experimental set-up with macroscopic probe spacing, and then
compare the results quantitatively with the values estimated from the photoemission Fermi
surfaces and band dispersion. Figure 12(a) shows the change in electrical conductivity of a
Si(111) wafer, deduced from the longitudinal voltage (Vxx ), during the Au deposition on the√

3 ×√
3-Ag surface at RT. The conductivity increases steeply from the beginning and reaches

the maximum at Au coverage  = 0.14 ML where the
√

21×√
21 superstructure is formed. In

the inset of figure 12(a), the measured electrical resistance, Rxx , is also shown. The longitudinal
resistance Rxx is converted to the change of sheet conductivity �σ through a relation [16],

�σ = L

W

(
1

Rxx
− 1

R0

)
, (4)

where L and W are the length (9.6 mm) and width (4.0 mm) of the measured surface area, and
R0 is the longitudinal resistance before the Au deposition.

As described above, the measured conductivity consists of three electrical channels, the
topmost surface-state atomic layer (ss), space-charge layers (sc), and inner bulk layers (b). In
two-dimensional systems, this is given by [16]

σ = σss + σsc + σbd, (5)
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Figure 12. (a) Change in electrical conductivity during Au deposition on the Si(111)
√

3 × √
3-

Ag surface at RT. Coverage dependence of the longitudinal resistance, Rxx , is shown in the inset.
(b) Summary of conductivity changes (�σ ). A solid curve shows the excess electrical conductivity
through the surface space-charge layer, �σsc, calculated as a function of surface EF position for
a Si wafer of p type (3900 �cm resistivity). Data points indicate the measured values of excess
conductivity (�σmeas),

√
3×√

3-Ag (�σ√
3) and

√
21×√

21-(Ag, Au) (�σ√
21) with respect to that

of the 7 × 7 clean phase. It is noted that �σmeas corresponds to the maximum conductivity change
in (a). The points are plotted at surface EF position determined by previous photoemission reports.
Band bending of the

√
3×√

3 (EF − EVBM = 0.1 eV, red) and
√

21×√
21 (EF − EVBM = 0.3 eV,

blue) phases is schematically depicted in the inset.

where d is the wafer thickness. In the present experimental set-up (figure 11), the bulk
contribution dominates the measured resistance because of the poor surface sensitivity due
to the macroscopic probe spacing. But the bulk contribution is kept constant during the surface
transformation. Therefore, the measured change in conductivity (figure 12(a)) originates only
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from the surface-state and the space-charge layers:

�σ = �σss + �σsc. (6)

On one hand, σsc and �σsc can be calculated by the Poisson equation once one knows
the band bending beneath the surface. The amount of band-bending under the surface can be
measured by, for example, core-level photoemission spectroscopy [16, 45]. The amount of
band-bending is expressed in terms of the difference in Fermi-level position between that at
the surface and in the bulk. Excess carriers are accumulated, or carriers are depleted due to the
band bending. Figure 12(b) exhibits the excess electrical conductivity, �σsc, through the space-
charge layer as a function of the surface EF position. The carrier mobility was assumed to be
the same as the bulk value. The electrical conductivity under the flat-band condition, where
the surface EF and bulk EF are equal, is defined as the reference (�σ = 0). The measured
conductivities of the

√
3×√

3-Ag and
√

21×√
21-(Ag, Au) are also plotted at their surface EF

positions. The Si(111)7 ×7 clean surface has its surface EF position almost at the centre of the
Si bulk band gap (0.63 eV above the valence-band maximum) and therefore the space-charge
layer is depletion type. The conductivity of the 7×7 surface state is several orders of magnitude
lower than that of the space-charge layer [56]. Therefore, the conductivity of the 7 × 7 surface
is a good experimental reference because it almost corresponds to the electrical conductivity
under the flat-band condition with negligible surface-state conductivity [16]. From the previous
photoemission spectroscopy, the surface EF positions of the

√
3 × √

3-Ag and
√

21 × √
21-

(Ag, Au) phases are ∼0.1 and ∼0.3 eV, respectively, above the valence-band maximum [45].
Then, the σss values of these phases are given by subtracting the calculated space-charge-layer
conductivity from the measured total conductivities, as shown in figure 12(b). The surface-state
conductivity of the

√
3 × √

3-Ag is ∼0.7 × 10−4 �−1 �−1 and that of the
√

21 × √
21-(Ag,

Au) is ∼3.2 × 10−4 �−1 �−1.
As shown in figure 5(d), the

√
3 × √

3-Ag phase possesses an isotropic circular Fermi
surface. As shown in figures 7 and 8, on the other hand, the

√
21 × √

21 phase shows
complicated spectral features of the Fermi surface due to contribution of two orientational
domains, extending over the second and third SBZs [29, 42]. Since equation (1) implies that the
integral should be performed on the Fermi surface in the reduced zone scheme, contributions
from all segments of Fermi surface in all reduced zones should be summed up. As shown
in figure 8, a summation of all the portions of the

√
21 × √

21 Fermi circles in the second
and third SBZs produces a single Fermi circle in the extended zone scheme. Furthermore, the
gap formation at the zone boundaries (figure 9) is so small that it hardly perturbs the energy
dispersion at EF. Therefore, the

√
21 × √

21 electronic structure is also reasonably regarded as
an isotropic free-electron system.

Since both of the
√

3 × √
3-Ag to

√
21 × √

21 phases are represented by a nearly
2D free-electron model, the density of states at EF is written as D = m∗/(π h̄2), which
can be calculated by using the value of m∗ obtained from the band dispersion. The Fermi
velocity is given by vF = h̄kF/m∗, which can be calculated by using the value of Fermi
wavenumber kF obtained from the photoemission result. Thus, from the band parameters
determined by ARPES, m∗ and kF of the two surface phases, D2D and vF are estimated
as in table 1. D and vF of the

√
21 × √

21 phase are 92% and 35% larger than those
of

√
3 × √

3, respectively. From the peak width of the surface state at EF as shown in
figure 5(c), the uncertainty of Fermi wavenumber �kF is obtained. This value is related to
the carrier mean free path � according to the uncertainty principle, ��kF ∼ 1. So the mean
free path is calculated as shown in table 1. Then the carrier relation time τ is calculated by
τ = �/vF. Thus we can obtain all quantities necessary for the calculation in equation (2). As
a consequence, if the Boltzmann picture is assumed, the conductivity σPES is calculated only
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Table 1. Various parameters of the metallic surface states of Si(111)
√

3×√
3-Ag and

√
21×√

21-
Ag superstructures, determined by photoemission spectroscopy. The surface-state conductivity σPES

is calculated from equation (2) using these parameters. The last row shows the values of surface-
state conductivity σFPP measured by the FPP method directly.

Physical quantity Unit
√

3 × √
3-Ag

√
21 × √

21-Ag

Fermi wavenumber, kF (Å
−1

) 0.10a 0.26

Its uncertaintya, �kF (Å
−1

) ∼0.061a ∼0.036
Effective mass, m∗ me 0.13a 0.25

Electron density, n(= k2
F/2π) (1014 cm−2) 0.16 1.1

Density of states, D(= m∗/π h̄2) (1013 eV−1 cm−2) 5.4 10
Fermi velocity, vF(= h̄kF/m∗) (108 cm s−1) 0.89 1.2
Mean free path, l(= 1/�k) (Å) ∼17 ∼28
Carrier relaxation time, τ (= l/vF) (10−15 s) ∼1.9 ∼2.4
Conductivity (PES)b, σPES (10−4 �−1) ∼0.65 ∼2.7

Conductivity (FPP)b, σFPP (10−4 �−1) ∼0.75 ∼3.2

a Reference [47].
b References [16, 57].

from the photoemission data, as shown in table 1. The conductivity increases by 2 × 10−4 �−1

through the
√

3 × √
3-to-

√
21 × √

21 transition. The value of �σ is consistent with the result
in figure 12(a).

On the other hand, the surface-state conductivity of these surfaces was separately measured
by the FPP method, which is listed by σFPP in table 1 [16, 57]. The values are reasonably
consistent with σPES within the experimental errors. This means that the Boltzmann picture
works for the surface-state electrical conduction of the

√
3 ×√

3-Ag and
√

21 ×√
21 surfaces.

The mean free path � at room temperature is around 20 Å, which is one order of magnitude
smaller than those in bulk Ag metal [2]. According to STM observations, the distances between
steps, domain boundaries, and point defects are of the order of 1000 Å, which is much larger
than �. Therefore, carrier scattering in the surface states is dominated by phonons, not by the
static defects.

2.3. Hall effect in surface atomic layers

When magnetic field (B) is applied perpendicular to these surfaces, electrons move along
the Fermi surfaces in reciprocal space [2]. The electrons in the

√
3 × √

3-Ag phase take a
counterclockwise orbit (an electron-like orbit) as shown in figure 8(e). Electron motion in the√

21 × √
21-(Ag, Au) phase is also depicted as a counterclockwise orbit in the extended zone

scheme (figure 8(f)). However, since the Fermi surface is larger than the surface Brillouin
zone (SBZ), the actual feature must be described in the reduced zone scheme. As shown in
figures 8(g) and (h), due to the back-folding of the Fermi surface and band, the electrons of√

21 × √
21-(Ag, Au) take a large clockwise orbit (a hole-like orbit) in the second SBZ and

a small counterclockwise orbit (an electron-like orbit) in the third SBZ. Therefore, the major
Fermi electrons of

√
21 × √

21-(Ag, Au) show hole-like behaviour, while those of
√

3 × √
3-

Ag are electron-like. Since the majority carriers in the surface states are thus expected to be
changed, the Hall effect measurement is necessary to confirm it [41].

Since the Hall coefficient, RH, is expressed as for the high field limit

RH = − 1

e(Nn − Np)
, (7)
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and for the low field limit

RH = − Nn − Np

e(Nn + Np)2
, (8)

where Nn(p) is the number of carriers with electron(hole)-like behaviour, according to the
consideration described above, RH should be negative for the

√
3 × √

3-Ag and positive for
the

√
21 × √

21-(Ag, Au) if we consider the surface state only. On the other hand, the surface
space-charge layers beneath these superstructures are inversion (accumulation) and depletion
layers for the

√
3 × √

3-Ag and
√

21 × √
21-(Ag, Au) phases, respectively, on an n(p)-type Si

wafer. As a consequence, through the
√

3 × √
3-to-

√
21 × √

21 transition, Np should decrease
and RH should be positive and become larger in the surface space-charge layer. This occurs
irrespective of whether the substrate Si crystal is n type or p type. However, this change is
opposite to that expected in the surface state; Np increases and RH changes from negative
to positive according to the consideration in figures 8(e)–(h). Therefore, entirely opposite
changes of the Hall coefficient are expected, which also leads to direct distinction between the
contributions from the surface state and from the space-charge layer. However, as described
below, the experiments show that the RH does not change in sign, remaining positive through
the transition. This is due to the parallel detection of the contributions from the surface space-
charge layer and from the surface state. But the results clearly show the contribution from the
surface state in the Hall effect, as clarified below.

The Hall resistance, RHall (=RH B = VH/I ), measured with the Hall voltage probes in
figure 11, has increased linearly with magnetic field as shown in figure 13(a). The gradients,
RH, obtained by line-fit to experimental curves are positive, and the value is smaller for√

21 × √
21-(Ag, Au) than for

√
3 × √

3-Ag. From the definition of RH, this clearly indicates
an increase in carrier density behaving as holes by the

√
3 × √

3-to-
√

21 × √
21 transition.

This is an unambiguous detection of the Hall effect of carriers in the surface state because, as
mentioned above, an opposite change in RH is expected from the surface space-charge layer.

In the inset of figure 13(a), the change in longitudinal resistance δRxx (= Rxx (B) −
Rxx (B = 0)) (magnetoresistance) shows nearly parabolic dependence on the magnetic field.
Since the value of ωcτ = eB

m∗ of the surface state reaches ∼0.05 at most in the present
experimental apparatus, the measurement has been performed in the low field limit (ωcτ � 1),
and Rxx can be fitted by [58]

Rxx (B) − Rxx (B = 0)

Rxx (B = 0)
= ξμ2

H B2, (9)

where μH is the Hall mobility of carriers and ξ is a constant governed by the scattering
mechanism of carriers (ξ ∼ 0.273 for acoustic phonon scattering, which is dominant at room
temperature). The μH values determined by the parabolic curve-fits are 430 and 440 cm2 V s−1

for the
√

3 × √
3-Ag and

√
21 × √

21-(Ag, Au) surfaces, respectively. These values are close
to the hole mobility in the bulk Si crystal (μH = 480 cm2 V s−1) [28, 59]. This means that the
present data measured by the macroscopic FPP method contain the conductivity of the surface
to a certain degree, although those of the bulk and space-charge layer are dominant. Therefore,
to extract the surface-state Hall effect, we need more quantitative discussion by focusing on
differences in Rxx and RHall between the two surface structures.

Decomposition of the experimental results of conductivities and Hall coefficients into the
contributions from the surface state and surface space-charge layer is done by adopting the two-
layer model [58]. In the model, it is essential to introduce a quantity, RHσ 2, and the measured
change of this quantity is a sum of those from the surface state and space-charge layer:

�(RHmeaσ
2
mea) = �(RHssσ

2
ss) + �(RHscσ

2
sc). (10)
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Figure 13. (a) Hall resistance of the
√

3 × √
3-Ag (red) and

√
21 × √

21-(Ag, Au) surface
superstructures (blue) [41]. The inset shows changes in the longitudinal resistance with magnetic
field. (b) The value of �(RHσ 2) plotted as a function of the surface Fermi level position
with respect to the Si bulk valence-band maximum for a p-type (3900 � cm) Si wafer. The
calculated results are given by solid curves (RH scσ

2
sc)) while the experimental values are indicated

by circles for Si(111)
√

3 ×√
3-Ag (

√
3) and Si(111)

√
21×√

21-(Ag, Au) (
√

21). Arrows labelled
‘meas’ correspond to change in (a) while ‘ss (sc)’ represents the surface-state (space-charge layer)
component.

The components of the space-charge layer can be calculated by solving Poisson’s equation [16].
Then the surface state components can be obtained from equation (10).

The solid curve in figure 13(b) shows RHscσ
2
sc values calculated as a function of the

Fermi-level position at the surface. The �(RHscσ
2
sc) between the

√
3-Ag and

√
21-(Ag, Au)

is ∼−1.5×10−6 �−1 T−1. As expected previously, this change is the opposite to the measured
results, which are plotted in figure 13(b), �(RHmeaσ

2
mea) > 0. Then, from equation (10),

�(RHssσ
2
ss) is now determined to be ∼+7.5 × 10−6 �−1 T−1.
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We have estimated the value of �(RHssσ
2
ss) in another way by using photoemission data

only. We have used the σPES in table 1 as the surface-state conductivity σss. The Hall
coefficient RHss is calculated from equation (8) with the carrier densities Nn and Np. The
carrier density in the

√
21 × √

21-(Ag, Au) phase can be calculated from the Fermi surfaces
in figures 8(g) and (h); the area fraction of the unoccupied states in the second SBZ gives
Np = 4.3 × 1013 cm−2, and the area fraction of the occupied states in the third SBZ gives
Nn = 0.4 × 1013 cm−2. As a result, we obtain RHss = +11 � T−1. On the other
hand, for the

√
3 × √

3-Ag phase, the Nn is estimated from the Fermi surface in figure 8(e),
Nn = 1.6 ×1013 cm−2, giving RHss = −39 � T−1. The surface-state conductivity is also given
by σPES in table 1. Finally we obtain the value of �(RHssσ

2
ss) ∼ 1.3 × 10−6 �−1 T−1, which

should be compared with the value calculated from the transport measurements. Both are of the
same order though there is a discrepancy in the quantitative value. The discrepancy may come
from several reasons, (1) errors in the mobility in the surface space-charge layer used in the
calculation of σsc, (2) overestimate of the carrier density in surface states from photoemission
data (some of them may not be mobile due to trapping in defect states), and (3) change in
dopant concentration near the surface. But the semi-quantitative agreement between the Hall
effect results and photoemission results indicates that the Hall effect in surface states is actually
detected.

As shown in this section, the parameters of surface electronic structures determined by
photoemission mapping of the Fermi surface and band dispersion are quite consistent with the
transport properties directly measured by the FPP methods. This means that the surface system
described here is so ‘clean’ that the Boltzmann picture works well. If the carrier mean free path
is so small due to high-density defects, hopping-type conduction should be taken into account
instead of the Boltzmann picture [34].

3. Anisotropic quasi-one-dimensional metal

In this section, we briefly introduce a case of quasi-1D metallic surface superstructure, the
Si(111)4 × 1-In surface. As shown in figure 14(b), its atomic arrangement is a massive array
of metallic quantum wires composed of four lines of In atom chains running along the [101]
direction, each wire being separated by a Si-atom chain in between the metallic wires. This
surface superstructure is contrasted to the isotropic Si(111)

√
3 × √

3-Ag surface described
in the previous section. The

√
3 × √

3-Ag surface has a circular Fermi surface (isotropic
2D metal), while the 4 × 1-In surface has an almost straight Fermi surface (Fermi lines)
as shown in figure 3(a), which is illustrated in figure 2(e). Figure 14(a) shows a schematic
drawing of the Fermi lines and experimental dispersion curves of three 1D surface-state
bands [22, 60, 61]. The bands show parabolic dispersions around the X point along the �–X
direction (along the In chain), while they do not show significant dispersion in the perpendicular
direction. Because of the quasi-1D electronic structure, therefore, the surface-state transport is
expected to be highly anisotropic, with a higher conductivity along the In wires than across
the wires.

There is one more interesting thing which is characteristic of the quasi-1D metallic
systems. Almost straight lines in the Fermi surface satisfy the nesting condition, which leads
to a charge-density-wave (CDW) transition. Actually, the 4 × 1-In surface is known to reveal a
phase transition by cooling; the 4 × 1 changes to an 8 × ‘2’ superstructure around 130 K [22].
This periodicity doubling correspond to the nearly half-filled bands m2 and m3 in figure 14(a);
the Fermi lines bisect the SBZ. Due to the CDW transition (Peierls transition), the surface
becomes insulating, resulting in a drastic decrease in surface conductivity [38].

20



J. Phys.: Condens. Matter 19 (2007) 355007 I Matsuda and S Hasegawa

Figure 14. (a) Schematic drawing of Fermi surfaces and band dispersion of 1D metallic surface-
state bands (m1, m2, and m3) of Si(111)4×1-In, determined by Abukawa et al [60] and Yeom et al
[22]. (b) Structure model of this surface [61].

Before discussing the quasi-1D transport phenomena, we describe the microscopic four-
point probe method (MFPP) for measuring surface transport using μm spacing between
probes [35]. This method is much more surface sensitive than the macroscopic one described
in figure 11, since the measuring current flows mainly near the surface. We have demonstrated
that the measured resistance directly corresponds to the surface layer [34, 35, 37–40].

When the MFPP is placed at the centre of a macroscopic sample surface (mm–cm in
size), the sample can be regarded as infinitely large, so that the measured resistance can be
analytically calculated by solving Poisson’s equation [62]: the resistances of an infinitely large
2D layer/sheet measured with linear MFPP (figure 15(a)) and square MFPP (figure 15(c))
arrangements with equidistant probe spacings should be

Rlinear = �V/I = 1

π
√

σxσy
ln 2, (11)

Rsquare = �V/I = 1

2π
√

σxσy
ln

(
1 + σy

σx

)
, (12)

respectively. �V is voltage drops measured by an inner pair of probes in the linear MFPP or
by any pair of adjacent probes in the square MFPP. I is the measuring current flowing through
another pair of probes. σx and σy are conductivities along x and y directions, respectively,
with the sample surface being on the xy plane. Then one can notice an important fact from
equations (11) and (12). Even if the probes are rotated by 90◦ with respect to the sample
surface having anisotropic conductivity, the linear MFPP measurement gives the same value
of resistance; σx and σy are just exchanged with each other in equation (11). This is true
for any angles of rotation of the probes in the linear MFPP, meaning that Rlinear always gives
a geometric mean of σx and σy only. The square MFPP, however, gives different values of
resistance by exchanging σx and σy in equation (12) when the square is rotated by 90◦ or when
another combination of current and voltage probes is selected. Thus, anisotropy in conductivity
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Figure 15. (a) A schematic drawing of the linear FPP method. Current and voltage probes are
indicated. (b) A scanning electron microscope (SEM) image of a monolithic MFPP contacting the
sample surface during surface conductivity measurements. (c) A schematic drawing of the square
FPP method. (d) A SEM image of the four independently driven STM tips during measurements.

of infinite 2D sheets can be measured only by the square MFPP method, and σx and σy are
obtained separately from the two values of resistance measured by two combinations of current
and voltage probes.

Figures 15(b) and (d) show scanning electron microscope images of the MFPP methods
with monolithic MFPP and four independently driven STM tips, respectively [35]. The former
probe is simple to operate and it is easy to extend the measurement with temperature variation.
On the other hand, the four-tip STM system is complicated but it allows any arrangement of
four probes. In this section, we introduce the measurements with the four-tip STM system [40].

The lower right inset of figure 16(b) shows an STM image of the Si(111)4 × 1 surface,
where the In chains run horizontally. Figure 16(a) gives I –V curves measured with the linear
MFPP with 60 μm probe spacing aligned parallel and perpendicular to the In chains. The SEM
images of the probes are shown in the insets. The outer two probes are current probes while
the inner ones are voltage probes. The values of resistance measured in the two directions were
essentially the same; the gradients of the I –V curves give almost the same resistances, 4.6 and
5.1 k�, within experimental error.

Figure 16(b) shows I –V curves measured by the square MFPP method. �Vi j is a voltage
drop measured between probe i and probe j , with current flowing from probe k to probe l, Ikl

(see the upper left inset of the SEM image). Two values of resistance, �V23/I14 = 192 �

and �V43/I12 = 10.3 k�, were obtained from the gradients of the respective I –V curves, just
by changing the combination of current and voltage probes. A line linking probe 1 (2) with
probe 4 (3) is parallel to the In chains, while that connecting probe 1 (3) and probe 2 (4) is
perpendicular to the chains. The results indicate that an exchange of σx (=σ⊥, perpendicular
to the In chains) and σy (=σ‖, parallel to the In chains) in equation (12) results in ∼60 times
difference in the measured resistance. This clearly demonstrates a detection of the anisotropy
in conductivity, and also means a direct detection of surface-state conductivity (because the
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Figure 16. (a) I–V curves from a single-domain Si(111)4 × 1-In surface measured by the linear
MFPP method with the probe spacing (distance between two probes) of 60 μm. The blue and
red colours correspond to the measurements parallel and perpendicular to the In chains (horizontal
direction in the SEM images of insets), respectively. (b) I–V curves measured by the square MFPP
method with the probe spacing (a side of the square) of 60 μm. The orange and green colours
correspond to the measurements of �V23/I14 and �V43/I12, respectively. The upper left inset is
a SEM image of the probes contacting the sample surface in UHV. The In chains are in horizontal
direction in this image. The lower right inset is an STM image of the 4 × 1-In surface, separately
taken by a single-tip STM.

substrate conductivity is isotropic). The distinction between figures 16(a) and (b) clearly
demonstrates the expectation from equations (11) and (12). It is to be noted that the rotation of
the square provides σ⊥ and σ‖ with higher accuracy. Such a rotational MFPP method and the
details of the transport research of the 4 × 1-In are described in [40].

We now discuss the value of σ‖ using the Boltzmann picture in terms of band dispersion
and the Fermi surface shown in figure 15(a) [22, 60]. Inserting the corresponding parameters
determined by ARPES into equation (1), the conductivity tensor was calculated, and finally we
obtained σ‖ (=σxx ) = 1.4×1011 × τ‖ [S/�] and σ⊥ (=σyy) = 7.2×109 × τ⊥ [S/�], where τi

is the relaxation time in the i direction. By comparing this σ‖ with the experimentally obtained
one, the relaxation time along the In chains is τ‖ = 5.2(±0.8)×10−15 s. This value is similar to

23



J. Phys.: Condens. Matter 19 (2007) 355007 I Matsuda and S Hasegawa

those of 2D surface layers of the
√

3×√
3-Ag and

√
21×√

21 phases described in the previous
section. On the other hand, the value is also similar to that in bulk In crystals, but smaller than
that of typical metals by nearly an order of magnitude, calculated by the Drude model [2]. The
mean free path along the In chains, estimated from this relaxation time and the group velocity
at the Fermi level, is about 3 nm. By assuming τ‖ = τ⊥ crudely, one can derive the anisotropy
in surface-state conductivity to be 19, which is in reasonable agreement with the experimental
one. Conversely, the measured ratio σ‖/σ⊥ ∼ 54 gives a ratio of relaxation time τ‖/τ⊥ ∼ 3,
meaning that the carriers propagate with a longer relaxation time along the In chains.

Thus, the measured 1D anisotropic conductivity is quantitatively consistent with the quasi-
1D Fermi surface (Fermi lines). The Boltzmann equation (1) works well for this case as for
the case of the

√
3 × √

3-Ag surface due to the ‘clean’ structure, where the density of defects
is so low. Another example of a quasi-1D metallic surface, Si(557)-Au [63–66], has a similar
anisotropic Fermi surface, but the anisotropy of conductivity is much lower than that of the
4 × 1-In [34]. This is due to the extremely high density of point defects. This makes the
conduction a hopping type, and the temperature dependence of conductivity semiconducting in
spite of the metallic Fermi surface.

4. Concluding remarks

In the present paper, we have reviewed Fermi-surface and band-dispersion mappings of
metallic atomic layers on semiconductor substrates studied by angle-resolved photoemission
spectroscopy, and discussed the close relation to surface transport properties. The first case is
for 2D isotropic free-electron-like surface states. The electrical conductivity increases through
the change in surface structure, from the

√
3 × √

3 to
√

21 × √
21, induced by Ag and Au

depositions on Si(111)
√

3 × √
3-Ag. The conductivity change is well described by evolution

of Fermi surfaces (Fermi rings) of these two phases through the Boltzmann equation. The
Hall effect during this structural transition is also understood by the electron trajectory on
the Fermi surfaces; the majority carriers in the surface states change from electrons to holes.
The second case is for quasi-1D free-electron-like surface states. The square-micro-four-point
probe method is introduced to measure the anisotropic conductivity of Si(111)4 × 1-In. The
result was quantitatively consistent with those estimated from the Fermi surfaces (Fermi lines).
The present research demonstrates that surface atomic layers with their characteristic surface
electronic states are a good playground for transport physics, which can be different from other
types of low dimensional electronic systems such as in surface inversion layers or at hetero-
junctions. Atomically thin low dimensional electronic systems are realized by using surface
superstructures, which can enhance quantum effects.

Carrier transport characteristics are sensitive not only to the Fermi surface and band
structure, but also to the defects, interference phenomena, and electron correlation effects,
especially in reduced dimensions. This is an important and interesting topic, which is not
included in the present paper. Actually, high density of defects and disorder in atomic structures
of surfaces change the carrier transport from band conduction to hopping-type conductions
accompanied by carrier localization phenomena [67, 68]. Collaboration with photoemission
and transport measurements is quite fruitful for such quantum transport physics on surfaces.
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